
Large Synoptic Survey Telescope (LSST)

The Gen3 Butler Registry Schema

Jim Bosch

DMTN-073

Latest Revision: 2018-05-19

Abstract

Documentation for the SQL schema that will be used tomanage datasets in theGen3
Butler.

LARGE SYNOPTIC SURVEY TELESCOPE

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Change Record

Version Date Description Owner name
2018-02-19 Initial version. J. Bosch
2018-03-27 Ready for dev team review. J. Bosch
2018-05-19 Ready for DM-wide RFC review. J. Bosch

Document source location: https://github.com/lsst-dm/dmtn-073

ii

https://github.com/lsst-dm/dmtn-073

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Contents

1 Overview 1

2 Datasets 1

2.1 Dataset . 1

2.2 DatasetType . 4

2.3 Composite Datasets . 6

3 DataUnits 6

3.1 Fundamental DataUnits . 7

3.1.1 Label . 7

3.1.2 AbstractFilter . 7

3.1.3 SkyPix . 8

3.2 Camera DataUnits . 9

3.2.1 Camera . 9

3.2.2 PhysicalFilter . 9

3.2.3 Sensor . 10

3.2.4 Exposure . 10

3.2.5 Visit . 11

3.2.6 ExposureRange . 12

3.3 SkyMap DataUnits . 13

3.3.1 SkyMap . 13

3.3.2 Tract . 13

3.3.3 Patch . 14

3.4 Joins Between DataUnits . 14

3.4.1 VisitSensorRegion . 15

3.4.2 ExposureRangeJoin . 17

3.4.3 MultiCameraExposureJoin . 17

3.4.4 VisitSensorSkyPixJoin . 17

3.4.5 VisitSkyPixJoin . 18

iii

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

3.4.6 PatchSkyPixJoin . 18

3.4.7 TractSkyPixJoin . 18

3.4.8 VisitSensorPatchJoin . 19

3.4.9 VisitPatchJoin . 19

3.4.10 VisitSensorTractJoin . 20

3.4.11 VisitTractJoin . 21

4 Collections and Provenance 22

4.1 Collections . 22

4.2 Execution . 23

4.3 Run . 23

4.4 Quantum . 23

5 Datastore Information 24

6 Additional Metadata Tables 25

6.1 POSIX Filesystem Datastores . 26

A Possible Modifications for Multi-User Environments 27

A.1 Cross-Registry Auto-Increment Keys . 28

A.2 Namespaces for String Keys . 29

iv

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

The Gen3 Butler Registry Schema

1 Overview

This document is a human-readable description of the minimal SQL schema that will be used
in the Gen3 Butler’s Registry component.

While some Registry instances may have additional tables, all must provide at least the tables
and views described here, and are generally expected to use the mechanisms described here
for most extensions.

The normative, machine-readable version of the minimal schema can be found at:

daf_butler:config/schema.yaml.

Most of the tables and figures in this document (including the descriptions of table columns)
are generated from the contents of that file.

The current SQL schema should be considered tentative and conceptual; we expect a round of
normalization/denormalization changes to be driven by performance concerns in the future.
In order to reduce future disruption from such changes, we’d like to identify and fix now any
aspects of the schema that are both guaranteed to cause performance problems and have
obvious solutions, but we would like to avoid hypothetical optimization discussions until we
have an opportunity to see how the schema performs under realistic conditions.

2 Datasets

2.1 Dataset

The Dataset contains a single record for every discrete unit of data managed by the Registry,
and acts as a sort of hub for the rest of the schema: nearly all other tables join to it, either to
label datasets (Section 3), provide provenance information and define groups (Section 4), or
connect to the Datastores that actually store them (Section 5).

Finding a particular dataset (assuming one does not already have the primary key value or
provenance information) typically requires three pieces of information:

1

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Dataset

dataset_id

dataset_type_name

run_id

quantum_id

camera

abstract_filter

physical_filter

sensor

visit

exposure

valid_first

valid_last

skypix

skymap

tract

patch

label

DatasetType

dataset_type_name

storage_class

Quantum

execution_id

task

run_id

Run

execution_id

collection

environment_id

pipeline_id

DatasetCollection

dataset_id

collection

DatasetComposition

parent_dataset_id

component_dataset_id

component_name

DatasetConsumers

quantum_id

dataset_id

actual

DatasetStorage

dataset_id

datastore_name

DatasetTypeMetadata

dataset_type_name

metadata_name

DatasetTypeUnits

dataset_type_name

unit_name

Execution

execution_id

start_time

end_time

host

Figure 1: Table Relationships for the limited schema, which lacks DataUnit dimension and
join tables. Colors are for disambiguation only.

2

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

AbstractFilter

abstract_filter

Camera

camera

Dataset

dataset_id

dataset_type_name

run_id

quantum_id

camera

abstract_filter

physical_filter

sensor

visit

exposure

valid_first

valid_last

skypix

skymap

tract

patch

label

Exposure

camera

exposure

visit

physical_filter

snap

datetime_begin

datetime_end

exposure_time

dark_time

Patch

skymap

tract

patch

cell_x

cell_y

region

PhysicalFilter

camera

physical_filter

abstract_filter

Sensor

camera

sensor

name

group

purpose

SkyMap

skymap

hash

Tract

skymap

tract

ra

dec

region

Visit

camera

visit

physical_filter

datetime_begin

datetime_end

exposure_time

seeing

region

Figure 2: Table Relationships, DataUnits and Dataset. Colors are for disambiguation only.

3

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

• its DatasetType (e.g. src);

• one or more Collections to search;

• a set of DataUnit values.

The full set of Dataset columns can be found in Table 1.

Name Type Attributes Description
dataset_id int PRIMARY KEY A unique autoincrement field used the primary key for

dataset.
dataset_type_name str NOT NULL The name of the DatasetType associated with this

dataset; a reference to the DatasetType table.
run_id int NOT NULL The id of the run that produced this dataset, providing

access to coarse provenance information.
quantum_id int The id of the quantum that produced this dataset, provid-

ing access to fine-grained provenance information. may
be null for datasets not produced by running a supertask.

camera str
abstract_filter str String name for the abstract filter, frequently a single

character.
physical_filter str
sensor str
visit int
exposure int
valid_first int First exposure identifier included in the range (inclusive).

may be zero to indicate an open interval.
valid_last int Last exposure identifier included in the range (inclusive).

may be max(int) to indicate an open interval.
skypix int Unique id of a pixel in the hierarchical pixelization, using

a numbering scheme that also encodes the level of the
pixel.

skymap str
tract int
patch int
label str A string value composed only of letters, numbers, and

underscores.

Table 1: Dataset Columns

2.2 DatasetType

A DatasetType captures two properties of a Dataset and associates them with a string name:

• a StorageClass;

• a set of DataUnit keyswhose corresponding valuesmust be provided to uniquely identify
a Dataset within a Collection.

4

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

StorageClasses are things that Datastores know how to serialize. They are closely related
to the in-memory data structure or class object used by a Dataset, and in most cases they
have a one-to-one relationship with those concepts. In other cases, a StorageClass may just
correspond to an intermediate opaque serialization interface (e.g. Python’s pickle) that can
be used to store objects of many different types. Opaque StorageTypes generally severely
limit the flexibility of Datastores to choose how objects are stored and make it impossible to
retreive components or slices from those datasets, but they provide a way to save almost-
arbitrary objects to Datastores without adding a new StorageClass each time. Because the
full set of StorageClasses must in general be known to all Datastores, the set of supported
StorageClasses and their definitions is maintained in code, not any particular Registry.

DatasetTypes are expected to be much more dynamic than StorageClasses or DataUnits; de-
velopers should be able to easily define new DatasetTypes by mixing an existing Storage-
Class with a set of existing DataUnits and a new name. We nevertheless expect DatasetType
creation to be quite rare compared with Dataset creation, and certain Registries may limit
DatasetType creation to superusers or require adherence to strict naming conventions (see
Section A.2).

The columns of the DatasetType table itself are shown in Table 2. The list of associated DataU-
nits is managed by the DatasetTypeUnits table, and a list of associated metadata tables (see
Section 6) is managed by the DatasetTypeMetadata table.

Name Type Attributes Description
dataset_type_name str PRIMARY KEY Globally unique name for this DatasetType.
storage_class str NOT NULL Name of the StorageClass associated with this Dataset-

Type. All registries must support the full set of standard
StorageClasses, so the set of allowed StorageClasses and
their properties ismaintained in the registry Python code
rather than the database.

Table 2: DatasetType Columns

Name Type Attributes Description
dataset_type_name str NOT NULL The name of the DatasetType.
unit_name str NOT NULL The name of a DataUnit associated with this Dataset-

Type.

Table 3: DatasetTypeUnits Columns

Name Type Attributes Description
dataset_type_name str NOT NULL The name of the DatasetType.
metadata_name str NOT NULL The name of a Metadata table that has a record for every

Dataset entry with this DatasetType.

Table 4: DatasetTypeMetadata Columns

5

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

2.3 Composite Datasets

Datasets may be composite: they may contain discrete named child Datasets that can be
retrieved efficiently from a parent or combined to form a new parent.

The structure of composite dataset is fully defined by its StorageClass; all Datasets with a
particular StorageClass will have the same set of component names and component Storage-
Classes (though some StorageClasses may permit a component to be NULL).

When a DatasetType is registered with a StorageClass that has components, DatasetTypes
for those components are automatically created as well. The entries in DatasetTypeUnits for
these child DatasetTypes will be the same as those for the parent, and the names for the
children will have the form {parent-dataset-name}.{component-name}.

Name Type Attributes Description
parent_dataset_id int PRIMARY KEY Link to the Dataset entry for the parent/composite

dataset.
component_dataset_id int PRIMARY KEY Link (with component_dataset_id) to the Dataset entry

for a child/component dataset.
component_name str NOT NULL Name of this component within this composite.

Table 5: DatasetComposition Columns

.

Both parent/composite datasets and child/component Datasets always have entries in the
Dataset table, and these are related by the entries of the DatasetComposition table.

Some Datasets are virtual composites, which means that they are not directly stored in any
Datastore. These are instead assembled entirely from their components using an “Assembler”
function stored in the Dataset table’s assembler field. Note that virtual composites are still
“more than the sum of their parts” from a Registry perspective. They have their own entries in
theDataset table, a number of entries in theDatasetComposition table, andpotentially entries
in one or more metadata tables. This means that they must be explicitly created (though
unlike other datasets, this can be done without a Datastore) before they can be retreived.

3 DataUnits

A DataUnit is a predefined discrete unit of data that can be used to label a Dataset, such as a
Visit or Tract. Together, the set of DataUnits are the keys that may be used in data ID dicts,

6

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

but DataUnits can also be associated with additional metadata fields and other DataUnits.
These relationships and metadata fields are predefined and managed by the Registry, and
are hence a major part of the common Registry schema described by this document.

All of the concrete DataUnits described in this section play the same role in how they relate
to Datasets, but they can have very different representations in the SQL schema.

All DataUnits have one or more Value Fields, which provide links to the Dataset table. A
DataUnit’s own Value Fields are not necessarily sufficient to uniquely identify its instances,
however; DataUnits can have Dependencies, which are other DataUnits whose Value Fields
must also be provided (recursively) for uniqueness.

Not all DataUnits have tables. Those that do have a (typically) compound primary key that
includes its Value Fields and those of its Dependencies (again, recursively). A DataUnit table
can also have a foreign key constraint that is not a Dependency; for example, a Visit has a
foreign key to PhysicalFilter, but the PhysicalFilter is not part of Visit’s compound primary key.

3.1 Fundamental DataUnits

Fundamental DataUnits are those that are not associated with a Camera or SkyMap.

3.1.1 Label

An arbitrary string value. There is no SQL representation or constraint on the values a Label
can take. Multiple labels are represented (by convention) by a comma-separated string.

Dependencies: none

Value Fields:

• label (str): A string value composed only of letters, numbers, and underscores.

Table: none

3.1.2 AbstractFilter

A filter that is not associated with a particular Camera. An abstract filter can be used to relate
similar physical filters, and is typically the filter associated with coadds.

7

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Dependencies: none

Value Fields:

• abstract_filter (str): String name for the abstract filter, frequently a single character.

Table: AbstractFilter

Name Type Attributes Description
abstract_filter str PRIMARY KEY Name of the filter.

Table 6: AbstractFilter Columns

3.1.3 SkyPix

A pixel in a hierarchical decomposition of the sky (e.g. HTM, Q3C, or HEALPix; we will select
and support just one, but which is TBD). Has no SQL representation; even a definition ta-
ble is not necessary, given that the allowable values and the associated spatial regions are
best computed on-the-fly. SkyPix units are preferred to SkyMap (i.e. Tract- Patch) units for
Datasets without any overlap regions (e.g. sharded reference catalogs). There are also consid-
erable advantages to standardizing on just one level of the standard pixelization: if all SkyPix
values are at a single level, they can be indexed using standard B-Trees and compared with
simple equality comparison. In contrast, comparing SkyPix values at different levels requires
pixelization- specific bit-shifting operations and custom indexes, which are much harder to
implement across multiple RDMSs. As a result, we will (at least initially) try to define just a
single level for all SkyPix values. Our preliminary guess is that this level should have pixels be
approximately (within a factor of ~4) of the size of a single Sensor on the sky.

Dependencies: none

Value Fields:

• skypix (int): Unique id of a pixel in the hierarchical pixelization, using a numbering
scheme that also encodes the level of the pixel.

Table: none

8

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

3.2 Camera DataUnits

Camera DataUnits are associated with a particular observatory and instrument, and are gen-
erally customized by a particular obs package.

Some Camera DataUnits are populated when a Camera is first defined within a Registry (Cam-
era, PhysicalFilter, Sensor), while others are created when observations are ingested (Expo-
sure, Visit).

ExposureRanges are unique among Camera DataUnits in being defined directly by the exis-
tence of one or more Datasets that use them. All other Camera DataUnits have their own
tables that contain entries that are independent of any particular Dataset (and are typically
each associated with many Datasets).

Each combination of Visit and Sensor is also associatedwith an entry in another table, VisitSen-
sorRegion, which holds the spatial region on the sky associated with each such combination.

3.2.1 Camera

An entity that produces observations. A Camera defines a set of PhysicalFilters and Sensors
and a numbering system for the Exposures and Visits that represent observations with it.

Dependencies: none

Value Fields:

• camera (str): Globally unique string indentifier for this Camera.

Table: Camera

Name Type Attributes Description
camera str PRIMARY KEY Globally unique string indentifier for this Camera.

Table 7: Camera Columns

3.2.2 PhysicalFilter

A filter associated with a particular Camera. PhysicalFilters are used to identify datasets that
can only be associated with a single observation.

9

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Dependencies: Camera

Value Fields:

• physical_filter (str): String nameof the filter, typically amulti-letter code in a convention
defined by the Camera (e.g. ”HSC-I” or ”F775W”).

Table: PhysicalFilter

Name Type Attributes Description
camera str PRIMARY KEY Name of the Camera with which this filter is associated.
physical_filter str PRIMARY KEY String name of the filter, typically a multi-letter code in

a convention defined by the Camera (e.g. ”HSC-I” or
“F775W”).

abstract_filter str Name of the AbstractFilter with which this filter is associ-
ated.

Table 8: PhysicalFilter Columns

3.2.3 Sensor

A sensor associated with a particular Camera (not an observation of that sensor; that requires
specifying an exposure or visit as well).

Dependencies: Camera

Value Fields:

• sensor (str): A unique (with Camera) integer identifier for the Sensor.

Table: Sensor

3.2.4 Exposure

An observation associated with a particular camera. All direct observations are identified
with an Exposure, but derived datasets that may be based on more than one Exposure (e.g.
multiple snaps) are typically identified with Visits instead, even for cameras that don’t have
multiple Exposures per Visit. As a result, Cameras that don’t have multiple Exposures per
Visit will typically have Visit entries that are essentially duplicates of their Exposure entries.

10

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Name Type Attributes Description
camera str PRIMARY KEY Nameof the Camerawithwhich this Sensor is associated.
sensor int PRIMARY KEY A unique (with Camera) integer identifier for the Sensor.
name str An alternate string identifer for the sensor; may or may

not be unique within a Camera.
group str A string name for a group of sensors with a Camera-

dependent interpretation, such as LSST’s rafts.
purpose str Role of the Sensor; typically one of “SCIENCE”, “WAVE-

FRONT”, or “GUIDE”, though Cameras may define addi-
tional values.

Table 9: Sensor Columns

The Exposure table contains metadata entries that are relevant for calibration Exposures,
and does not duplicate entries in Visit that would be the same for all Exposures within a Visit.

Dependencies: Camera

Value Fields:

• exposure (int): Unique (with camera) integer identifier for this Exposure.

Table: Exposure

Name Type Attributes Description
camera str PRIMARY KEY The Camera used to observe the Exposure.
exposure int PRIMARY KEY Unique (with camera) integer identifier for this Exposure.
visit int ID of the Visit this Exposure is associated with. Sci-

ence observations should essentially always be associ-
ated with a visit, but calibration observationsmay not be.

physical_filter str NOT NULL The bandpass filter used for all exposures in this Visit.
snap int If visit is not null, the index of this Exposure in the Visit,

starting from zero.
datetime_begin datetime TAI timestamp of the start of the Exposure.
datetime_end datetime TAI timestamp of the end of the Exposure.
exposure_time float Duration of the Exposure with shutter open (seconds).
dark_time float Duration of the Exposure with shutter closed (seconds).

Table 10: Exposure Columns

3.2.5 Visit

A sequence of observations processed together, comprised of one or more Exposures from
the same Camera with the same pointing and PhysicalFilter. The Visit table containsmetadata
that is both meaningful only for science Exposures and the same for all Exposures in a Visit.

11

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Dependencies: Camera

Value Fields:

• visit (int): Unique (with camera) integer identifier for this Visit.

Table: Visit

Name Type Attributes Description
camera str PRIMARY KEY The Camera used to observe the Exposures associated

with this Visit.
visit int PRIMARY KEY Unique (with camera) integer identifier for this Visit.
physical_filter str NOT NULL The bandpass filter used for all exposures in this Visit.
datetime_begin datetime TAI timestamp of the beginning of the Visit. This should

be the same as the datetime_begin of the first Exposure
associated with this Visit.

datetime_end datetime TAI timestamp of the end of the Visit. This should be the
same as the datetime_end of the last Exposure associ-
ated with this Visit.

exposure_time float The total exposure time of the Visit in seconds. This
should be equal to the sum of the exposure_time values
for all constituent Exposures (i.e. it should not include
time between Exposures).

seeing float Average seeing, measured as the FWHM of the Gaussian
with the same effective area (arcsec).

region bytes A spatial region on the sky that bounds the area cov-
ered by the Visit. This is expected to be more precise
than the region covered by the SkyPixels associated with
the Visit, but may still be larger than the Visit as long as
it fully covers it. Must also fully cover all regions in the
VisitSensorRegion entries associated with this Visit. Re-
gions are lsst.sphgeom.ConvexPolygon objects persisted
as portable (but not human-readable) bytestrings using
the encode and decode methods.

Table 11: Visit Columns

3.2.6 ExposureRange

An inclusive range of Exposures that may be open in either direction, typically used to identify
master calibration products. There is no SQL table associated with ExposureRanges; there is
no additional information associated with an ExposureRange besides the camera, valid_first,
and valid_last fields already present in Dataset.

Dependencies: Camera

Value Fields:

12

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

• valid_first (int): First exposure identifier included in the range (inclusive). may be zero
to indicate an open interval.

• valid_last (int): Last exposure identifier included in the range (inclusive). maybemax(int)
to indicate an open interval.

Table: none

3.3 SkyMap DataUnits

SkyMap DataUnits together define a two-level subdivision of the sky with overlaps, suitable
for coaddition and coadd processing.

3.3.1 SkyMap

A set of Tracts and Patches that subdivide the sky into rectangular regions with simple pro-
jections and intentional overlaps.

Dependencies: none

Value Fields:

• skymap (str): A human-readable name for the SkyMap, used as its unique identifier.

Table: SkyMap

Name Type Attributes Description
skymap str PRIMARY KEY A human-readable name for the SkyMap, used as its

unique identifier.
hash str NOT NULL A hash of the SkyMap’s parameters, used to prevent du-

plicate SkyMapswith the different names frombeing reg-
istered.

Table 12: SkyMap Columns

3.3.2 Tract

A large rectangular region mapped to the sky with a single map projection, associated with a
particular SkyMap.

13

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Dependencies: SkyMap

Value Fields:

• tract (int): Unique (with SkyMap) integer identifier for the Tract.

Table: Tract

Name Type Attributes Description
skymap str PRIMARY KEY The SkyMap with which this Tract is associated.
tract int PRIMARY KEY Unique (with SkyMap) integer identifier for the Tract.
ra float Right ascension of the center of the tract (degrees).
dec float Declination of the center of the tract (degrees).
region bytes A spatial region on the sky that bounds the area

associated with the Tract. This is expected to be
more precise than the SkyPixels associated with the
Visit (see TractSkyPixJoin), but may still be larger than
the Tract as long as it fully covers it. Regions
are lsst.sphgeom.ConvexPolygon objects persisted as
portable (but not human-readable) bytestrings using the
encode and decode methods.

Table 13: Tract Columns

3.3.3 Patch

A rectangular region within a Tract.

• Tract

• SkyMap

Value Fields:

• patch (int): Unique (with SkyMap and Tract) integer identifier for the Patch.

Table: Patch

3.4 Joins Between DataUnits

ManypredefinedDataUnit relationships aremany-to-many, andhence are not captured in the
descriptions of individual DataUnits above. Some of these relationships can be implemented

14

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Name Type Attributes Description
skymap str PRIMARY KEY The SkyMap with which this Patch is associated.
tract int PRIMARY KEY The Tract with which this Patch is associated.
patch int PRIMARY KEY Unique (with SkyMap and Tract) integer identifier for the

Patch.
cell_x int NOT NULL Which column this Patch occupies in the Tract’s grid of

Patches.
cell_y int NOT NULL Which row this Patch occupies in the Tract’s grid of

Patches.
region bytes A spatial region on the sky that bounds the area

associated with the Patch. This is expected to be
more precise than the SkyPixels associated with the
Visit (see PatchSkyPixJoin), but may still be larger than
the Patch as long as it fully covers it. Regions
are lsst.sphgeom.ConvexPolygon objects persisted as
portable (but not human-readable) bytestrings using the
encode and decode methods.

Table 14: Patch Columns

as join tables or views, but others are just SQL expressions that can be used in a SELECT
statement’s JOIN clause.

The complete set of conceptual DataUnit relationships is shown in Figure 3.

3.4.1 VisitSensorRegion

A many-to-many join table that provides region information for Visit-Sensor combinations.

Table: VisitSensorRegion

Name Type Attributes Description
camera str PRIMARY KEY Name of the Camera associated with the Visit and Sen-

sor.
visit int PRIMARY KEY Visit ID
sensor int PRIMARY KEY Sensor ID
region bytes A spatial region on the sky that bounds the area associ-

ated with this Visit+Sensor combination. This is expected
to bemore precise than the SkyPixels associatedwith the
Visit+Sensor (see VisitSensorSkyPixJoin), but may still be
larger than the true region as long as it fully covers it. Re-
gions are lsst.sphgeom.ConvexPolygon objects persisted
as portable (but not human-readable) bytestrings using
the encode and decode methods.

Table 15: VisitSensorRegion Columns

15

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Label SkyPix

Visit

TractPatch

VisitSensorRegion

AbstractFilter

PhysicalFilter

Camera

Sensor

Exposure

ExposureRange

SkyMap

MultiCameraExposureJoin

Dependency: many

Spatial: many

SQL Join: one

one

many

many

Fundamental DataUnit

Camera DataUnit

SkyMap DataUnit

Table

Non-Table

Figure 3: DataUnit Conceptual Joins

16

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

3.4.2 ExposureRangeJoin

A calculated join between Datasets identified with an Exposure (typically raw science frames)
and Datasets identified with ExposureRange (typically master calibrations).

3.4.3 MultiCameraExposureJoin

A join table that relates Exposures from different Cameras, with explicitly-created entries.
This is intended to be used primarily in calibration products production, to relate auxilliary
telescope observationswith themain camera observations they support. It could also be used
to relate CBP state (represented as CBP “Exposures”) with actual main camera observations
of the CBP.

Table: MultiCameraExposureJoin

Name Type Attributes Description
camera_1 str NOT NULL Camera name for lhs Dataset.
exposure_1 int NOT NULL Exposure ID for lhs Dataset.
camera_2 str NOT NULL Camera name for rhs Dataset.
exposure_2 int NOT NULL Exposure ID for rhs Dataset.

Table 16: MultiCameraExposureJoin Columns

3.4.4 VisitSensorSkyPixJoin

A spatial join table that relates Visit+Sensor to SkyPix, also used as an intermediate when
relating Visit+Sensor to SkyMap DataUnits. Entries are expected to be calculated outside the
database and added/updated whenever VisitSensorRegion is.

Table: VisitSensorSkyPixJoin

Name Type Attributes Description
camera str NOT NULL Name of the Camera associated with the Visit and Sen-

sor.
visit int NOT NULL Visit ID
sensor int NOT NULL Sensor ID
skypix int NOT NULL IDof a SkyPix that overlaps the Visit+Sensor combination.

Table 17: VisitSensorSkyPixJoin Columns

17

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

3.4.5 VisitSkyPixJoin

A spatial join table that relates Visitto SkyPix, also used as an intermediate when relating Visit
to SkyMap DataUnits. This can and probably should be implemented as a trivial view on Vis-
itSensorSkyPixJoin.

View: VisitSkyPixJoin, defined as:

SELECT DISTINCT camera, visit, skypix FROM VisitSensorSkyPixJoin;

Name Type Attributes Description
camera str NOT NULL Name of the Camera associated with the Visit.
visit int NOT NULL Visit ID
skypix int NOT NULL ID of a SkyPix that overlaps the Visit combination.

Table 18: VisitSkyPixJoin Columns

3.4.6 PatchSkyPixJoin

A spatial join table that relates Patch to SkyPix, also used as an intermediate when relating
Patch to Camera DataUnits. Entries are expected to be calculated outside the database and
added along with the Patch itself.

Table: PatchSkyPixJoin

Name Type Attributes Description
skymap str NOT NULL Name of the SkyMap associated with the Patch.
tract int NOT NULL Tract ID
patch int NOT NULL Patch ID
skypix int NOT NULL ID of a SkyPix that overlaps the Patch.

Table 19: PatchSkyPixJoin Columns

3.4.7 TractSkyPixJoin

A spatial join table that relates Tract to SkyPix, also used as an intermediate when relating
Tract to Camera DataUnits. This can and probably should be implemented as a trivial view on
PatchSkyPixJoin.

View: TractSkyPixJoin, defined as:

18

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

SELECT DISTINCT skymap, tract, skypix FROM PatchSkyPixJoin;

Name Type Attributes Description
skymap str NOT NULL Name of the SkyMap associated with the Tract.
tract int NOT NULL Tract ID
skypix int NOT NULL ID of a SkyPix that overlaps the Tract.

Table 20: TractSkyPixJoin Columns

3.4.8 VisitSensorPatchJoin

A spatial join table that relates Visit+Sensor to Patch via SkyPix. Should be implemented as a
view; it may be materialized as long as it can be kept up to date when new Visits or SkyMaps
are added. If a database UDF is available to determine whether two regions overlap, we could
include that in this view to refine the results. For now, we will assume that such a UDF is not
available.

View: VisitSensorPatchJoin, defined as:

SELECT DISTINCT

VisitSensorSkyPixJoin.camera,

VisitSensorSkyPixJoin.visit,

VisitSensorSkyPixJoin.sensor,

PatchSkyPixJoin.skymap,

PatchSkyPixJoin.tract,

PatchSkyPixJoin.patch

FROM

VisitSensorSkyPixJoin INNER JOIN PatchSkyPixJoin ON (

VisitSensorSkyPixJoin.skypix = PatchSkyPixJoin.skypix

);

3.4.9 VisitPatchJoin

A spatial join table that relates Visit to Patch via SkyPix. Should be implemented as a view;
it may be materialized as long as it can be kept up to date when new Visits or SkyMaps are
added. If a database UDF is available to determine whether two regions overlap, we could

19

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Name Type Attributes Description
camera str NOT NULL Name of the Camera associated with the Visit and Sen-

sor.
visit int NOT NULL Visit ID
sensor int NOT NULL Sensor ID
skymap str NOT NULL Name of the SkyMap associated with the Patch.
tract int NOT NULL Tract ID
patch int NOT NULL Patch ID

Table 21: VisitSensorPatchJoin Columns

include that in this view to refine the results. For now, we will assume that such a UDF is not
available.

View: VisitPatchJoin, defined as:

SELECT DISTINCT

VisitSkyPixJoin.camera,

VisitSkyPixJoin.visit,

PatchSkyPixJoin.skymap,

PatchSkyPixJoin.tract,

PatchSkyPixJoin.patch

FROM

VisitSkyPixJoin INNER JOIN PatchSkyPixJoin ON (

VisitSkyPixJoin.skypix = PatchSkyPixJoin.skypix

);

Name Type Attributes Description
camera str NOT NULL Name of the Camera associated with the Visit.
visit int NOT NULL Visit ID
skymap str NOT NULL Name of the SkyMap associated with the Patch.
tract int NOT NULL Tract ID
patch int NOT NULL Patch ID

Table 22: VisitPatchJoin Columns

3.4.10 VisitSensorTractJoin

A spatial join table that relates Visit+Sensor to Tract via SkyPix. Should be implemented as a
view; it may be materialized as long as it can be kept up to date when new Visits or SkyMaps
are added. If a database UDF is available to determine whether two regions overlap, we could

20

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

include that in this view to refine the results. For now, we will assume that such a UDF is not
available.

View: VisitSensorTractJoin, defined as:

SELECT DISTINCT

VisitSensorSkyPixJoin.camera,

VisitSensorSkyPixJoin.visit,

VisitSensorSkyPixJoin.sensor,

TractSkyPixJoin.skymap,

TractSkyPixJoin.tract

FROM

VisitSensorSkyPixJoin INNER JOIN TractSkyPixJoin ON (

VisitSensorSkyPixJoin.skypix = TractSkyPixJoin.skypix

);

Name Type Attributes Description
camera str NOT NULL Name of the Camera associated with the Visit and Sen-

sor.
visit int NOT NULL Visit ID
sensor int NOT NULL Sensor ID
skymap str NOT NULL Name of the SkyMap associated with the Tract.
tract int NOT NULL Tract ID

Table 23: VisitSensorTractJoin Columns

3.4.11 VisitTractJoin

A spatial join table that relates Visit to Tract via SkyPix. Should be implemented as a view;
it may be materialized as long as it can be kept up to date when new Visits or SkyMaps are
added. If a database UDF is available to determine whether two regions overlap, we could
include that in this view to refine the results. For now, we will assume that such a UDF is not
available.

View: VisitTractJoin, defined as:

SELECT DISTINCT

VisitSkyPixJoin.camera,

VisitSkyPixJoin.visit,

21

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

TractSkyPixJoin.skymap,

TractSkyPixJoin.tract

FROM

VisitSkyPixJoin INNER JOIN TractSkyPixJoin ON (

VisitSkyPixJoin.skypix = TractSkyPixJoin.skypix

);

Name Type Attributes Description
camera str NOT NULL Name of the Camera associated with the Visit.
visit int NOT NULL Visit ID
skymap str NOT NULL Name of the SkyMap associated with the Tract.
tract int NOT NULL Tract ID

Table 24: VisitTractJoin Columns

4 Collections and Provenance

4.1 Collections

A Collection is a group of Datasets that is constrained to have at most one Dataset for any
combination of DatasetType and identifying DataUnits. The inputs and outputs of a particular
processing run is typically associated with a Collection, as are human-curated combinations
of related processing runs.

Only oneCollectionwithin a Registry is accessible to anyButler client, making them fromauser
perspective themost natural analog to the Gen2 Butler’s Data Repositories. The constraint on
Dataset uniqueness within a Collection ensures that any Butler.get call has an unambiguous
result. Instead of lazily chaining Collections in the manner of Gen2 Data Repositories, we
simply permit Datasets to belong to multiple Collections.

Collections are implemented via a simple tag table, DatasetCollection, whose entries are just
tuples of a dataset_id and the string name that identifies the Collection.

It may be necessary for performance reasons to introduce an integer primary key for Collec-
tions, along with a table to relate each Collection name to its primary key (and possibly other
metadata). Doing this now seems premature.

22

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Name Type Attributes Description
dataset_id int PRIMARY KEY Link to a unique record in the Dataset table.
collection str PRIMARY KEY Name of a Collection with which this Dataset is associ-

ated.

Table 25: DatasetCollection Columns

4.2 Execution

Records of the Execution table can be used to represent any step in a production. Executions
are frequently associated one-to-one with records of other tables that use the same primary
key fields (such as Run and Quantum). Conceptually these tables are Execution specializa-
tions. Executions themselves only record basic information about the step and cannot be
directly nested.

The full set of Execution columns can be found in Table 26.

Name Type Attributes Description
execution_id int PRIMARY KEY A unique autoincrement field used as the primary key for

Execution.
start_time datetime The start time for the execution. May have a different

interpretation for different kinds of execution.
end_time datetime The end time for the execution. May have a different in-

terpretation for different kinds of execution.
host str The system on which the execution was run. May have a

different interpretation for different kinds of execution.

Table 26: Execution Columns

4.3 Run

Run is a specialization of Execution used to capture coarse provenance. Every Dataset and
Quantum must be associated with a Run.

For Datasets produced by SuperTask Pipelines, a Run represents an execution of a single
Pipeline with no change to its configuration or the software environment. Other special Runs
may represent raw data ingest mechanisms.

The full set of Run columns can be found in Table 27.

4.4 Quantum

Quantum is a specialization of Executionused to capture fine-grainedprovenance forDatasets
produced by SuperTasks.

23

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

Name Type Attributes Description
execution_id int PRIMARY KEY A unique integer identifier for this Run, which is also the

execution_id for an associated Execution record.
collection str A Collection name with which all Datasets in this Run are

initially associated, also used as a human-readable name
for this Run.

environment_id int A dataset_id linking to a Dataset that contains a descrip-
tion of the software environment (e.g. versions) used for
this Run.

pipeline_id int A dataset_id linking to a Dataset that contains a serializa-
tion of the SuperTask Pipeline used for this Run (if any).

Table 27: Run Columns

Each Quantum record is uniquely associated with an Execution record.

The full set of Quantum columns can be found in Table 28.

Name Type Attributes Description
execution_id int PRIMARY KEY Aunique integer identifier for thisQuantum,which is also

the execution_id for an associated Execution record.
task str Fully-qualified name of the SuperTask that executed this

Quantum.
run_id int Link to the Run this Quantum is a part of.

Table 28: Quantum Columns

5 Datastore Information

The DatasetStorage table provides public information about how Datasets are stored in par-
ticular Datastores. This includes whether they are present at all, which is indicated by the
existence of a record with a particular Dataset/Datastore combination.

Name Type Attributes Description
dataset_id int PRIMARY KEY Link to the Dataset table.
datastore_name str PRIMARY KEY Name of the Datastore this entry corresponds to.

Table 29: DatasetStorage Columns

This table is unique among Registry tables in that it is updated directly by Datastore, rather
than via Butler (whether this goes through a Registry client or some other common interface
to the database is TBD). In general, Datastores must also record private information about
each Dataset (e.g. filenames, read formatters). These entries may be stored in additional
tables in the same database that holds the Registry, but may also be stored elsewhere, and
are never considered part of the Registry even if they are stored in the same database.

24

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

6 Additional Metadata Tables

Registries may have additional metadata tables that are associated only with certain Dataset
or DataUnit entries. These fall into three categories:

• metadata for Datasets with a particular StorageClass;

• metadata for Datasets with a particular DatasetType;

• metadata for Camera DataUnits associated with a particular Camera.

No metadata tables are required for a fully-functional Butler implementation, but we expect
them to contain quantities that may be frequently used in user queries to locate Datasets
with certain properties (including the expressions used to describe what processing should
be performed by the SuperTask framework).

While the set of StorageClasses is predefined and shared by all Registries, it is currently con-
sidered out of scope for this document, and hence the metadata tables are as well. We nev-
ertheless expect the set of StorageClass-specialized Dataset metadata tables to be common
to all Registries, and a future version of this document will include a complete description of
their schemas. StorageClass-specific metadata tables must have dataset_id field that is used
both as that table’s primary key and a foreign key to the Dataset table.

The set of DatasetTypes is very much dynamic, and may not be the same for different Reg-
istries. DatasetType-specific Dataset metadata tables are thus never expected to be a part of
the common schema, and expressions that rely on them are always considered non-portable.
DatasetType-specific metadata tables must have dataset_id field that is used both as that ta-
ble’s primary key and a foreign key to the Dataset table.

While not all Registries will have the full set of Cameras, any Registry that contains a certain
Camera can be expected to have all of the custommetadata tables associated with it. Expres-
sions that rely on Camera-specific metadata tables are obviously not portable between Cam-
eras, and for this reason Camera specialization code should attempt to put most frequently-
used metadata in the generic fields provided by the generic Camera DataUnit tables (e.g.
Sensor.group) and avoid any need for Camera-specific metadata tables. The definition of
the schemas of Camera-specific DataUnit metadata tables is delegated to the obs package
responsible for defining that camera.

25

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

6.1 POSIX Filesystem Datastores

A Datastore backed by a POSIX filesystem is expected to be a major component of the LSST
production environment. It also serves as a useful example of the kind of tabular information
Datastores must store outside the Registry.

A POSIX Filesystem Datastore is configured1 by associating a Formatter object with each Stor-
ageClass. Formatters having methods for both reading and writing objects, but the config-
uration is only used to select the Formatter used when writing. When a Dataset is written,
the name of the Formatter is saved by the Datastore and associated with that Dataset, so the
same Formatter can be used for reading later. This means that instances of a single Storage-
Class can be stored in multiple ways within a single Datastore, and the user need not know
the configuration that was used to write a Dataset in order to read it.

The filesystem paths in a POSIX Filesystem Datastore are computed relative to the root of the
data repository, and must be unique for each Dataset. This may be achieved by inserting the
Dataset’s Run ID and DataUnit values into a string template that is unique for its DatasetType;
this produces paths of the same form as those of the Gen2 Butler. Unique filenames can also
be achieved smply by including the primary key of the 1 table (dataset_id). Our implementa-
tion permits but does not require filesystem paths to include subdirectories.

The internal information a POSIX Filesystem Datastore records for each Dataset is thus:

• dataset_id (integer, primary key);

• the Formatter name (string);

• the filesystem path (string);

• the StorageClass name (string).

Our implementation currently uses special StorageClass names to indicate certain types of
composite dataset storage, whichmeans that the Datastore cannot rely on obtaining the Stor-
ageClass from the Butler. This may change in the future, but it may continue to be useful to
record the StorageClass here as well as a consistency check.

As noted above, this internal information may be stored either within the same database as
a Registry or in an external (not necessarily SQL) database.

1in part; a full discussion of Datastore configuration is beyond the scope of this document

26

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

A Possible Modifications for Multi-User Environments

Some database servers will be expected to effectively handle multiple layered Registries, or
at least provide a single Registry with complex, multi-user Dataset ownership. For example, a
Registry that supports test processing for internal LSST development could allow all users to
see all entries in all tables, but users could be permitted to create andmodify only entities (e.g.
Collections, Datasets, DataUnits) that they created. The Registries that support the public LSST
Science Platform must be considerably more complex; each user effectively sees a different
Registry, because in addition to the common (and read-only) official LSST data products they
may have read and possibly write access to different user-produced data products. These
cannot be different databases; user-driven processing will essentially always use official data
products as inputs, and user-defined Collections will certainly include official Datasets.

These features are probably best implemented in different ways for different RDBMSs, but
they should build on similar functionality for layered sharing of astronomical catalogs that
has long been planned for the Science Platform (and already exists in other astronomical
database systems, such as SkyServer’s CasJobs). The number of entries in multi-user Registry
tables should be orders of magnitude smaller than the the number of entries in shared astro-
nomical catalogs (even the smallest catalog Datasets typically have thousands of records but
require just a handful of Registry entries), but Registy tables may have much more complex
relationships.

One technique for supporting layered Registries that may be useful for any RDBMS is splitting
up a Registry “table” into multiple actualy tables (for different users, groups, or access levels)
and providing a (possibly temporary) view that combines them. For example, assuming an
RDBMS that supports namespaces of some kind, we could provide per-user Collections with
something like the following:

% When creating the data release:

CREATE TABLE dr2.DatasetCollections (dataset_id int, collection string);

% ...populate dr2 tables...

% When user Alice signs up for a personal data repository:

CREATE TABLE users.alice.DatasetCollections (dataset_id, collection string);

% Whenever Alice creates a Registry client:

27

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

CREATE TEMPORARY VIEW DatasetCollection

SELECT * FROM dr2.DatasetCollection

UNION

SELECT * FROM users.alice.DatasetCollection;

We have explicitly declared the common schema to be a read-only (i.e. SELECT-only) interface
for precisely this reason; all operations that need to update or append to common schema
“tables” must go through a Python interface that can be customized by specific Registry im-
plementations to write to the appropriate underlying tables.

A.1 Cross-Registry Auto-Increment Keys

This technique of using union views to combinemultiple implementation tables is problematic
for tables that have an autoincrement primary key, such as Dataset and Execution: inserts to
different implementation tables could easily generate ID conflicts in the union.

SomeRDBSsmay provideways formultiple tables to share an autoincrement ID source, which
would of course be the most natural solution. ID ranges may also be reserved for different
users, and could even be shared by users and rewritten only in the (probably rare) case where
users with the same ID range opt to publish data to each other.

Another approach is to augment each autoincrement field with another field that is unique to
each implementation table, anduse them together as a compoundprimary key. This of course
changes the public registy schema, and in fact an earlier version of the common schema in-
cluded these fields. We have since dropped them after determining that they would not gen-
erally be useful in implementing transfers between Registries (e.g. between SQLite Registries
on shared-nothingworker nodes and theData Backbone), as other factorswouldmake rewrit-
ing the IDs almost inevitable in those contexts. The compound primary key approach may be
more useful in multi-user single-database Registries however, where ID rewriting is more dis-
ruptive andwe havemore control over the assignment of the per-table unique values. Adding
compound primary keys back into the schema could be very disruptive if done after single-
key Registries are in common use, however, so it is important to decide during initial Butler
development if other approaches can be used instead.

28

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

A.2 Namespaces for String Keys

Some Tables and DataUnits use strings as unique identifiers, including DatasetType, Collec-
tions, SkyMaps, and Labels. These can also have problems with clashes in multi-user environ-
ments, regardless of whether the Registry uses union views to combine multiple implemen-
tation tables. For example, because the definition of a DatasetType cannot change as long as
it has any Datasets associated with it, it may be prudent to use DatasetType names in opera-
tions that encode the name of the data release it is intended for. During construction, a cycle
nameor other periodically-refreshed namespace could be used for sharedDatasetTypes (etc.)
instead.

While normal users of a multi-user will most frequently use predefined, shared DatasetTypes,
SkyMaps, and Labels, user-defined versions of these must be possible, and per-user Collec-
tions are expected to be quite common. These should probably include the username (prob-
ably as a prefix).

These conventions can of course be implemented within regular single-strings fields with no
special database support, but it is worth considering whether it would be better to split the
namespaces into separate fields. If the Python API provides a “using declaration” functionality
that sets the default namespaces to be searched for quantities, having a separate namespace
field for string keys might cut down on the need to do string manipulation in queries. It could
alsomake it easier to implement automatic/enforced per-user namespaces when using union
joins over multiple implementation tables. Again using Collections as an example, we could
omit the Collection namespaces from the implementation tables, and only include them in
the join:

% When creating the data release:

CREATE TABLE dr2.DatasetCollections (dataset_id int, collection string);

% ...populate dr2 tables...

% When user Alice signs up for a personal data repository:

CREATE TABLE users.alice.DatasetCollections (dataset_id, collection string);

% Whenever Alice creates a Registry client:

CREATE TEMPORARY VIEW DatasetCollection

SELECT

29

LARGE SYNOPTIC SURVEY TELESCOPE
The Gen3 Butler Registry Schema DMTN-073 Latest Revision 2018-05-19

dr2.DatasetCollection.dataset_id AS dataset_id,

"dr2" AS namespace,

dr2.DatasetCollection.collection AS collection,

FROM dr2.DatasetCollection

UNION

SELECT

users.alice.DatasetCollection.dataset_id AS dataset_id,

"alice" AS namespace,

users.alice.DatasetCollection.collection AS collection,

FROM users.alice.DatasetCollection;

Just like compound primary keys for tables with auto-increment keys, adding namespace
fields to unique string identifiers could be highly disruptive if done after Registries are already
in broad use. If this is considered a useful change, we should make it as early as possible in
Butler development.

30

	Overview
	Datasets
	Dataset
	DatasetType
	Composite Datasets

	DataUnits
	Fundamental DataUnits
	Label
	AbstractFilter
	SkyPix

	Camera DataUnits
	Camera
	PhysicalFilter
	Sensor
	Exposure
	Visit
	ExposureRange

	SkyMap DataUnits
	SkyMap
	Tract
	Patch

	Joins Between DataUnits
	VisitSensorRegion
	ExposureRangeJoin
	MultiCameraExposureJoin
	VisitSensorSkyPixJoin
	VisitSkyPixJoin
	PatchSkyPixJoin
	TractSkyPixJoin
	VisitSensorPatchJoin
	VisitPatchJoin
	VisitSensorTractJoin
	VisitTractJoin

	Collections and Provenance
	Collections
	Execution
	Run
	Quantum

	Datastore Information
	Additional Metadata Tables
	POSIX Filesystem Datastores

	Possible Modifications for Multi-User Environments
	Cross-Registry Auto-Increment Keys
	Namespaces for String Keys

